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Abstract

This review utilizes the robust database of literature contained in toxicological profiles developed 

by the Agency for Toxic Substances and Disease Registry. The aim was to use this database to 

identify developmental toxicity studies reporting alterations in hormone levels in the developing 

fetus and offspring and identify windows of sensitivity. We identified 74 oral exposure studies in 

rats that provided relevant information on 30 chemicals from 21 profiles. Most studies located 

provided information on thyroid hormones, with fewer studies on anterior pituitary, adrenal 

medulla, ovaries, and testes. No studies pertaining to hormones of the posterior pituitary, pancreas, 

or adrenal cortex were located. The results demonstrate that development of the endocrine system 

may be affected by exposure to environmental contaminants at many different points, including 

gestational and/or lactational exposure. Moreover, this review demonstrates the need for more 

developmental toxicity studies focused on the endocrine system and specifically alterations in 

hormone levels.
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Introduction

Chemicals that affect the normal function of the endocrine system are called endocrine-

disrupting chemicals (EDCs). These are defined by the US Environmental Protection 

Agency (EPA) as ‘exogenous agents that interfere with synthesis, secretion, transport, 

metabolism, binding action or elimination of natural blood-borne hormones that are present 
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in the body and are responsible for homeostasis, reproduction, and developmental process’ 

(US EPA 1997). Anin-depth review and scientific statement from the Endocrine Society 

focused on seven different topics, which strengthens the knowledgebase of EDCs’ actions 

on endocrine health-related effects (Gore et al. 2015). Considering the impact on several 

different toxicokinetics/toxicodynamic processes listed above, it is not surprising that the 

mechanism of action of these chemicals is complex. It was established that there are at 

least five important mechanisms, four of which involve induction of receptors (the aryl 

hydrocarbon [Ah] receptor, the peroxisome proliferator activated receptor [PPAR], the 

constitutive androstane receptor [CAR, phenobarbital induction], the pregnane X receptor 

[PXR, rifampicin induction]) (Fuhr 2000). The end result is increased expression of various 

enzymes. Another type of induction (ethanol-like) is mediated by ligand stabilization of the 

CYP2E1 enzyme. A detailed discussion on the mechanism of action of EDCs is beyond the 

scope of this paper; interested readers should consult a literature review of the topic (Fuhr 

2000; Gore et al. 2015).

Developmental stages of the embryo/fetus present unique opportunities for harmful action 

by xenobiotics. These stages may contain specific windows of sensitivity, to EDC during 

fetal development, for different outcomes of interest. Therefore, our first assumptions 

regarding the endocrine system can be based on embryogenesis.

• In humans, the endocrine glands have a highly increased sensitivity during weeks 

4–9 of gestation when the organs first develop (O’Rahilly 1983)

• Later on, windows of sensitivity may occur with the differentiation of specific 

cells. (O’Rahilly 1983)

Frank pathological changes, such as hermaphroditism or cretin dwarfism, affecting the 

development of the endocrine system are easily recognized (Guyton and Hall 2000). 

Specifically, effects seen after exposures to known EDCs in medications, foods, and 

workplaces have been reported (Rogers and Kavlock 2010). However, more subtle changes 

in humans, such as alterations in hormone levels, are difficult to confirm and often don’t 

manifest adverse effects until later in life (Rogers and Kavlock 2010). Epidemiological 

studies examining environmental exposures may indicate possible associations; however, 

a confirmed link (evidence of causality) is lacking due to missing exposure data to 

the chemical studied, possible cofounding factors, and co-exposure to multiple EDCs. 

Therefore, laboratory studies in animals are highly instrumental in identifying EDCs, their 

targets, and possible windows of sensitivity.

This review is part of a series (Buser and Pohl 2015; Ingber and Pohl 2016; Buser 

et al. 2018) aimed at understanding developmental windows of sensitivity utilizing 

the robust database of toxicological profiles published by the Agency for Toxic 

Substances and Disease Registry (ATSDR). ATSDR publishes toxicological profiles for 

hazardous substances that include only the highest quality, peer-reviewed toxicology 

studies (https://www.atsdr.cdc.gov/toxprofiles/guidance/profile_development_guidance.pdf). 

ATSDR extrapolates from these studies to determine levels of exposure for humans that may 

result in adverse health effects (https://www.atsdr.cdc.gov/toxprofiles/index.asp). The aim of 

this study was to review available data from ATSDR toxicological prohles and addenda 
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related to developmental effects of the endocrine system (specifically developmental 

alterations to hormone levels) and to use this data to evaluate possible windows of 

sensitivity.

Methods

The primary literature search, conducted on 2 July 2019, examined ATSDR Toxicological 

Prohles (n = 185) and Addenda (n = 33). The prohles and addenda were searched for 

data pertaining to chemically-induced developmental effects of the endocrine system; 

specifically, the review is focused on alterations to hormone levels (Supplemental Table 

1). The review was limited to studies in rats because of the well-established developmental 

timeline in this species, the understanding of the relationship between developmental timing 

in humans and timing in rats, the abundance of toxicology studies in this species, and the 

documented utility of using the rat as a model for endocrine disruptor screening and testing 

(Gray et al. 2004).

Any prohles or addenda that documented studies with endocrine system developmental 

effects in rats – which included the thyroid, pituitary, adrenal, pancreas, ovaries and testicles 

– were moved into the data extraction phase (n = 21 substances). The following data were 

extracted from each animal study: chemical name and form; strain; exposure route and 

vehicle; exposure duration and frequency; no observed adverse effect level (NOAEL), where 

applicable; lowest observed adverse effect level (LOAEL); and adverse effect observed. 

Results were stratified according to endocrine system gland – thyroid, pituitary, adrenal, 

pancreas, ovaries and testicles – and further stratified according to affected hormone within 

each of those glands.

Results

Of the 185 toxicological profiles and 33 addenda that were published between 1989 and 

2019, 74 oral exposure studies provided relevant information on 30 chemicals from 21 

toxicological profiles (Table 1). The majority of studies located provided information 

on thyroid hormones, with fewer studies focusing on anterior pituitary, adrenal medulla, 

ovaries, and testes. No studies pertaining to hormones of the posterior pituitary, pancreas, or 

adrenal cortex were located. A majority of the studies utilized full-gestational or gestational 

plus lactational exposures. However, there were a few studies within each endocrine 

system that utilized shorter exposures, including several looking at single-day exposures. 

Most studies evaluated the hormone levels immediately following cessation of exposure; 

additionally, some studies evaluated levels later in life as a follow-up.

Thyroid hormones

The thyroid was the most studied endocrine gland, with thirty-nine studies investigating the 

effects of twelve different chemicals on the circulating levels of the major thyroid hormones 

triiodothyronine (T3) and thyroxine (T4) (Figure 1).

Exposure and adverse effects on triiodothyronine (T3) were found in thirteen studies 

assessing exposure to nine different chemicals (doses ranging from 0.0002 mg/kg/day to 
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1300 mg/kg/day). The majority of the studies reported decreases in T3 levels following in 
utero or lactational exposure. Most of the studies focused on full-gestational or gestational 

plus lactational exposures, thus the ability to determine a narrow window of susceptibility 

is more difficult. However, one study evaluated a narrower window of GD10-16. This 

study involved exposure to PCBs at a relatively high dose of 16 mg/kg/day and reported 

decreases in plasma concentrations of T3 (Kobayashi et al. 2008). Another study reported 

decreases in serum T3 levels following a single day exposure on GD15 to 0.2 mg/kg/day of 

2,3,7,8-TCDD (Nishimura et al. 2003).

Changes to thyroxine (T4) levels was the most studied effect, with thirty-seven different 

studies involving eleven different chemicals investigating this endpoint. All studies reported 

decreases in T4 levels following developmental exposure to doses ranging from 0.0001 

mg/kg/day to 1300 mg/kg/day (most doses were below 30 mg/kg/day). As with T3, the 

majority of studies reporting effects on T4 levels assessed full-gestational exposure or 

gestational plus lactational exposure. However, a few studies did attempt to narrow this 

window further by looking at exposures to 16 mg/kg/day PCBs or 0.0001 mg/kg/day 

2,3,7,8-TCDD on GD10-16 (Seo et al. 1995; Morse et al. 1996; Kobayashi et al. 2008) or 

single exposure to 0.001 mg/kg/day or 0.0002 mg/kg/day 2,3,7,8-TCDD on GD15 (Fenton 

et al. 2002; Nishimura et al. 2003). The overlap in alterations of T3 and T4 following 

exposure on GD10-16, and specifically on GD15, suggests that this may represent a window 

of sensitivity to induce thyroid changes in the developing fetus.

Additionally, several studies on thyroid-hormone alterations utilized lactational only 

exposure to BDEs, PCBs, perchlorate, atrazine, chlorine dioxide, and PFOS (Toth et al. 

1990; Goldey et al. 1995; Stoker et al. 2000, 2004; Mahle et al. 2003; Kuriyama et al. 

2007; Yu et al. 2009; Lee et al. 2010). Taken together, these studies may indicate that 

the development of the endocrine system extends after birth, and post-natal exposure may 

adversely affect the normal levels of circulating hormones.

Anterior pituitary hormones

Alterations to pituitary hormones – growth hormone (GH), thyroid-stimulating hormone 

(TSH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin – were 

reported in many of the studies identified by this review, second only to the number 

of studies on thyroid hormones (Figure 2). Of these, GH and prolactin were the least 

studied, with only a single study reporting alterations to these hormones following full 

gestational and lactational exposure to 6.12 mg/kg/day endosulfan (Caride et al. 2010). The 

directionality of the results for this gland was varied; the results for TSH were the most 

consistent with seven of the eight studies reporting increased TSH levels in pups. Results for 

LH and for FSH were less consistent.

The body of evidence pertaining to the development of the pituitary gland generally utilized 

longer exposure durations; however, several studies did employ acute exposures. For the 

longer duration studies, some focused on gestational only exposure with a few including 

exposure prior to mating, others were limited to lactational only exposure, and several 

spanned periods of gestation and lactation. On the other hand, alterations to TSH, LH, and 

FSH levels were all reported in studies utilizing single-day exposures spanning from GD 
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11 through LD 10. There were additional acute duration studies that reported alterations in 

hormones following in utero exposure to 100 mg/kg/day atrazine on GD1-8 (Cummings et 

al. 2000) or exposure to 75 mg/kg/day or 100 mg/kg/day bromodichloromethane on GD6-10 

(Bielmeier et al. 2004, 2007). These results suggest that development of the endocrine 

system occurs over a lengthy period and both in utero and post-natal exposure on any given 

day may adversely affect the normal functioning of this system.

Adrenal medulla hormones

Alterations in levels of hormones produced in the adrenal medulla – noradrenaline, 

norepinephrine, and dopamine – were noted in seven studies following exposure to seven 

different chemicals (Figure 3). Dopamine was the most commonly investigated with six 

studies reporting developmental changes to this hormone following doses ranging from 0.61 

mg/kg/day to 50 mg/kg/day; noradrenaline and norepinephrine were each investigated in two 

studies. The directionality of the results varied, with some studies reporting increases, some 

reporting decreases, and others simply reporting alterations in the levels of the hormones. 

Furthermore, the exposure durations do not suggest a clear narrow window; one, four, and 

three studies investigated gestational only, lactational only, and gestational plus lactational 

exposures, respectively. This body of evidence precludes the identification of a window of 

susceptibility although it does show that chemical exposure during any of those exposure 

periods results in alterations to adrenal gland hormones.

Ovaries and testes hormones

Alterations in levels of hormones produced in the ovaries (Figure 4) and testes (Figure 5) 

were noted in fifteen and twelve laboratory rat studies, respectively. Hormones produced 

in the ovaries – estradiol, estrogen, and progesterone – were affected by exposure to seven 

different chemicals, following exposure to doses ranging from 7 × 10−6 mg/kg/day to 

200 mg/kg/day. The majority of the noted effects were decreased levels of the circulating 

hormones, although there was less consistency with the three studies reporting changes 

in estrogen levels following exposure to 200 mg/kg/day atrazine, 0.001 mg/kg/day 2,3,7,8-

TCDD, or 150 mg/kg/day methoxychlor. The majority of the studies employed longer 

exposure durations, precluding the identification of a narrow window (Figure 4). However, 

a series of studies on the effects of in utero bromodichloromethane exposure (75–100 

mg/kg/day) on progesterone levels did utilize shorter durations of exposure (Bielmeier et 

al. 2001, 2004, 2007). These studies exposed rats between GD 6–10 and noted reduced 

serum progesterone in the offspring. Moreover, Bielmeier et al. (2001) employed single day 

exposures to 75 mg/kg/day bromodichloromethane on GD 8 or GD 9 and noted similar 

decreases in serum progesterone following exposure to the same dose used in the longer 

duration studies. Interestingly, several studies focused on exposure later in gestation (starting 

around GD 14) and on lactational exposure. An additional study by Stoker et al. (2000) 

dosed the developing rats with 200 mg/kg/day atrazine from post-natal day 23–53 and 

reported dose-related increases in serum estradiol and estrone. These studies together may 

indicate that the development of the endocrine system extends after birth, and post-natal 

exposure may adversely affect the normal levels of circulating hormones.
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While a few studies investigating effects on hormones of the testes did note increases 

following exposure to 0.0005 mg/kg/day 2,3,7,8-TCDD or 10 mg/kg/day tributyltin chloride 

during gestation or during lactation (Haavisto et al. 2001; Omura et al. 2001), the majority 

of the studies consistently reported decreases in testosterone levels following exposure to 

any of eight different chemicals (Figure 5). About half of the studies exposed rats during 

gestation while the other half focused on lactational exposure. Moreover, there were single-

day exposures utilized for both of these time periods. Exposures to 2,3,7,8-TCDD (doses 

ranging from 6.4 × 10−5 mg/kg/day to 0.001 mg/kg/day) or 6 mg/kg/day lindane on any 

of GD 11, 13, or 15 or PND 9, 10, 11, 12, 13, or 14 resulted in alterations to the normal 

circulating levels of testosterone in rat offspring (Mably et al. 1992a; Bjerke and Peterson 

1994; Dalsenter et al. 1997; Haavisto et al. 2001; Adamsson et al. 2008). Similar to that 

noted for the effects on ovary hormones, these results suggest that development of the 

endocrine system occurs over a lengthy period and both in utero and post-natal exposure on 

any given day may adversely affect the normal functioning of this system.

Discussion

This review utilized the robust database of literature contained in ATSDR’s toxicological 

profiles. The benefit of using this database is that the profiles provide a summary of the 

highest quality studies on which to base health effects conclusions. Of interest in this review, 

with profiles on 185 substances, information on developmental alterations of hormones was 

only found in 21 profiles. This suggests a possible gap for developmental data on a range of 

substances.

Epidemiological studies that have investigated developmental effects on the endocrine 

system reported hormonal changes in association with exposure to environmental toxicants. 

Available studies mostly concentrated on thyroid hormone levels and reproductive hormone 

levels. The following discussion is not intended as an all-inclusive list of EDCs, but rather 

an illustrative selection based on ATSDR’s toxicological profiles and some of the chemicals 

discussed above under animal studies.

TSH and thyroid hormones

TSH and thyroid hormones were the most often studied endpoints following exposure 

to EDCs in humans. Halogenated aromatic hydrocarbons were the focus of many of the 

studies evaluated. For example, increased levels of TSH in newborns exposed to TCDD 

in utero in the Seveso cohort indicated possible related to regulation of thyroid hormone 

metabolism (Baccarelli et al. 2008). The authors reported that the mean TCDD levels 

correlated with TSH levels above 5 μU/mL serum. The 5 μU/mL standard is significant as 

it was established by the World Health Organization (WHO) as an indicator of potential 

thyroid problems in neonates. The authors noted that higher TCDD exposures across all 

three different exposure zones showed increased TSH concentrations. The group mean of 39 

ppt TCDD was associated with TSH levels above the standard. When PCBs (polychlorinated 

biphenyls) were measured in maternal milk, it was reported that high levels of PCBs were 

associated with reduced total T3 and total T4 in mothers and increased levels of TSH in 

newborns (Koopmanesseboom et al. 1994). A cohort of mother-infant pairs (n = 232) was 
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studied in Germany to assess the potential impact of environmental exposure to CDDs, 

dioxin-like PCBs and six indicator PCBs (mono- and di-ortho PCBs) on TSH and thyroid 

hormone status in newborns and neurodevelopment (Wilhelm et al. 2008). In contrast to 

the above studies, multiple regression analysis showed no decrease of thyroid hormones 

related to total toxic equivalents (TEQ; a value providing toxicity information for mixtures 

of structurally-related chemicals) in blood and milk of mothers and their newborns.

A number of studies evaluated effects on thyroid hormones in neonatal serum or cord blood 

associated with in utero exposure to polybrominated diphenyl ethers (PBDEs). Abdelouahab 

et al. (2013) evaluated the potential associations between thyroid hormone levels in the 

umbilical cord blood and maternal serum concentrations of PBDEs collected at <20 weeks 

of pregnancy (n = 380). Significant negative associations were observed between maternal 

PBDE levels and both free and total T4 in cord blood, but not free or total T3 or TSH in cord 

blood. Similarly, neonatal TSH assessed in blood samples collected 24 hours after birth (on 

average) was not related to PBDE concentrations in maternal serum collected at the start of 

the third trimester or at delivery from 289 expectant mothers living in the Salinas Valley of 

California (Chevrier et al. 2011).

Inconsistent findings were also observed when thyroid hormones and PBDEs levels were 

evaluated in infant serum and/or cord blood. For example, Mazdai et al. (2003) found no 

correlations between PBDE concentrations and thyroid hormone levels (free and total T4 

and free and total T3) in umbilical cord blood (n = 12). Similarly, there was no correlation 

between PBDEs and thyroid hormone levels in umbilical cord blood in another study of 21 

South Korean mothers undergoing Cesarean section (Kim et al. 2012a). Both T3 and free 

T3 in cord blood were significantly inversely related to PBDE in a study of 54 Taiwanese 

births (Lin et al. 2011); however, T4, free T4, and TSH were unaffected in this study. Kim et 

al. (2012b) analyzed blood samples collected from infants in neonatal screening tests. They 

found a positive relationship between PBDEs and TSH (BDE 197 and BDE 196 only) and a 

negative association with T3 (BDE 154 only) for babies without congenital hypothyroidism 

(n = 12), and no significant relationships between PBDEs and thyroid hormones in babies 

with congenital hypothyroidism (n = 26).

Another group of chemicals of concern are pesticides. An association between prenatal 

exposure to 17 organochlorine pesticides (OCPs) and concentrations of free T3, free T4, and 

TSH in the cord blood of newborns (n = 115) was studied in China (Luo et al. 2017). The 

authors reported marginally significant inverse associations of cord plasma measurements 

of total hexachlorcyclohexanes, ρ,ρ’-DDE and methoxychlor with free T4 levels, but not 

with free T3 and TSH levels. In addition, higher cord plasma levels of aldrin, dieldrin, total 

DDTs, and all OCPs were found to be related to the increase in cord plasma TSH levels 

after the adjustment for confounders. In Tokyo, 147 mother-neonate pairs were investigated 

for the influence of prenatal pyrethroid exposure and hormone levels in neonates (Zhang 

et al. 2014). The results showed that maternal pyrethroid exposure had no apparent effect 

on the neonatal thyroid hormone status. When exposure to 17 OCPs was measured in 220 

placentas from a male birth cohort in Southern Spain, newborns with higher levels of endrin 

in placenta had higher odds of TSH cord blood levels ≥ 5 mU/L (80th percentile); whereas, 
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higher prenatal exposure to endosulfan-sulfate was associated with lower odds of TSH ≥ 5 

mU/L (Freire et al. 2011).

Of course, many authors realized that humans are exposed to mixtures of chemicals and 

tried to encompass in their studies several chemical groups. PCBs, organochlorine pesticides 

and poly- and perfluoroalkyl substances (PFAS) were measured in 221 cord blood samples 

collected in Belgium between 2013 and 2016 (Dufour et al. 2018). Multivariate statistical 

analyses indicated a decrease of TSH level in male newborns with detectable levels of 

4,4′-DDE in comparison with those with no detectable level. The authors also found a 

negative association between perfluorononanoic acid (PFNA) concentration and TSH in 

male newborns.

In a Norwegian study, 19 POPs (persistent organic pollutants) and 10 thyroid parameters 

were analyzed in serum from 391 pregnant women in their second trimester (Berg et 

al. 2017). TSH concentrations were also obtained from heel-prick blood of the infants. 

Several POPs were significantly associated with changes in TSH and thyroid hormone 

levels. Perfluorooctane sulfonic acid was positively associated with TSH. PCBs, HCB, and 

non-chlorinated chemicals were inversely associated with T3, T4, and FT4. Additionally, 

perfluorodecanoic acid and perfluoroundecanoic acid were inversely associated with T3 and 

free T3.

In a study from Korea, PCBs, PBDEs, and organo chlorine pesticides were compared with 

five thyroid hormones in cord serum of newborn infants as well as TSH in bloodspot 

collected at 2 days after birth (n = 104) (Kim et al. 2015). In cord serum, BDE-47, −99, and 

Σchlordane (CHD) showed significant positive associations with cord or bloodspot TSH. At 

the same time, p,p’-DDE and HCB revealed negative associations with total T3 and total T4 

in cord serum, respectively. Maternal exposure to β-HCH, ΣCHD, ΣDDT, or p,p’-DDE were 

also associated with neonatal thyroid hormones changes.

Reproductive hormones

Changes in reproductive hormone levels were also studied in association with exposure 

to EDCs. For example, a follow-up to the previously cited German study (Wilhelm et al. 

2008) related environmental exposure to CDDs, dioxin-like PCBs, and six indicator PCBs 

to the potential impact on gonadal hormones in newborns (Cao et al. 2008). Testosterone 

and estradiol levels were measured in maternal and cord serum of 104 mother-infant pairs, 

representing a subsample of the total sample of 232 participants. Testosterone reduction was 

more prominent in cord serum of females, and estradiol reduction was more prominent in 

that of male infants. In general, decreased hormone levels were more pronounced for dioxins 

than for indicator PCBs.

Adolescent boys (n = 438) were included in a study of the general population of the Faroe 

Islands (Grandjean et al. 2012). PCBs and p,p’-DDE were measured in cord blood at birth 

and in serum from clinical examination at age 14. Higher prenatal PCB exposure was 

associated with lower serum concentrations of both LH and testosterone in 14-year-old boys. 

In addition, sex hormone binding globulin was positively associated with both prenatal and 

concurrent PCB exposures.
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Prenatal exposure to OCPs and their influence on steroids and reproductive hormones 

in cord blood was analyzed in a Hokkaido study (Araki et al. 2018). Samples (n = 

232) with both OCP and hormone data were obtained, and the results indicated that 

chlordanes, cis-hexachlorobenzene, heptachlor epoxide, mirex, and toxaphenes in maternal 

blood were inversely associated with testosterone, cortisol, cortisone, sex hormone-binding 

globin, prolactin, and androstenedione-dehydroepiandrosterone (DHEA) and testosterone-

androstenediones ratios among boys.

Mixtures

It is noted that not all available epidemiological studies found an association between 

exposure to endocrine disruptors and changes in hormone levels in newborns. Some of the 

reasons include different exposure levels to specific chemicals of interest, different congener 

make-up, population background, exposure to mixtures, etc.

Indeed, co-exposures to other chemicals that interact together may result in greater-

than-additivity or less than-additivity, and thus may alter our assumptions about 

toxicity of the whole mixture. For example, PCB mixtures antagonized TCDD-induced 

immunosuppression (Bannister et al. 1987; Davis and Safe 1989) and developmental 

toxicity (cleft palate) in mice (Haake et al. 1987). Intermediate-duration dietary exposure 

of rats to binary mixtures of TCDD plus 2,2′,4,4′,5,5′-hexachlorobiphenyl showed evidence 

for synergistic action in decreasing thyroid hormone levels (serum T4) (van Birgelen et 

al. 1992) and increasing hepatic porphyrin levels (van Birgelen et al. 1996). However, 

no evidence was found for synergistic interactions between 2,3,7,8-TCDD and two 

other congeners 3,3′,4,4′,5-pentachlorobiphenyl or 2,3,3′,4,4′,5-hexachlorobiphenyl. Oral 

exposures to PCBs or CDDs such as 2,3,7,8-TCDD are associated with a wide selection 

of health effects that show considerable overlap. Although some PCB congeners have been 

demonstrated to produce effects via a common initial mechanistic step with 2,3,7,8-TCDD 

and other CDDs (binding to the Ah receptor), mechanistic understanding of subsequent 

processes is too incomplete to provide reliable predictions of the final outcome.

Another example is co-exposure of TCDD and p,p’-DDE and their effect on male 

reproductive organ development and function. Data is restricted to a single study that found 

that combined exposure to TCDD and p,p’-DDE led to decreased prostate weight in male 

rat offspring to a greater degree than either compound alone (Loeffler and Peterson 1999). 

However, the study design precluded the definitive conclusion regarding the direction of the 

interaction. Mechanistic information suggests that the chemicals may act on a molecular 

scale by independent anti-androgenic mechanisms. Anti-androgenic effects from p,p’-DDE 

are proposed to involve inhibition of androgen-binding to androgen receptors (Kelce et al. 

1995, 1997); whereas, TCDD is not expected to interfere with androgen receptor-ligand 

binding and may indirectly affect androgen signaling by altering growth factor pathways 

(Roman et al. 1998). However, the mechanism must be further elucidated.

Strengths and limitations of the database

There are several strengths to this review, which includes the robust database included in 

ATSDR’s toxicological profiles. These profiles include only highest quality, peer-reviewed 
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toxicology studies, thus this review benefits from relying on previously vetted high-quality 

studies. There are differences in developmental stages across species that needs to be taken 

into account when extrapolating to human exposure periods. While this is an inherent 

limitation in toxicological studies, rats are recommended as a reliable experimental model 

for humans, including during prenatal and postnatal development. Because rats have a 

well-established developmental timeline that has been associated to developmental timing 

in humans, this review was limited to rats. While this is a limitation of the review, many 

toxicological studies are conducted in rats, thus limiting the review to rats only still provided 

a large number of studies across a range of substances. Moreover, there is documented utility 

of using the rat as a model for endocrine disruptor screening and testing, which further 

strengthens the rationale for limiting the review to this species.

Conclusion

This review attempted to identify specific windows when the developing animal may be 

more susceptible to chemically-induced alterations to hormone levels produced by the 

endocrine system. Laboratory animal studies are essential for investigating these windows 

of sensitivity, as it is often difficult to pinpoint these windows based on epidemiological 

studies. Our results suggest that development of the endocrine system occurs over a lengthy 

period and both in utero and post-natal exposure on any given day may adversely affect 

the normal functioning of this system. This suggests that we cannot only specify the 

windows that correlate with the basic development of the endocrine glands but must also 

find secondary windows that correlate with their further maturation. There is difficulty when 

dealing with hormones because of the multitude of ways that hormones can be affected 

(e.g. enzymes affecting levels of hormones in various tissues). In order for this review to be 

feasible, we focused on the actual hormone levels themselves and not on upstream enzymes. 

Because of the inconsistency of findings in both human and animal studies across the range 

of chemicals, it is impossible to draw specific conclusions regarding changes in hormone 

response. A major limitation we encountered in this review is the paucity of information 

on developmental alterations of hormones for the majority of substances. This suggests 

a possible gap for developmental data on a range of substances. Future research should 

focus on exposing animals to a broad range of substances, especially emerging chemicals 

of concern, throughout different stages of development in order to better identify windows 

of sensitivity. This information along with epidemiological studies on this subject may be 

useful for developing preventative measures to improve the health of exposed populations.
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Figure 1. 
Windows of exposure for laboratory rat studies noting alterations in hormones produced by 

the thyroid. Legend: BP-6: hexabromobiphenyl; decaBDE: decabromodiphyenyl ether; NS: 

not specified; pentaBDE: pentabromodiphenyl ether; PFOS: perfluorooctane sulfonic acid; 

PCB: polychlorinated biphenyl; 2,3,7,8-TCDD: 2,3,7,8-tetrachlorodibenzodioxin; tetraBDE: 

tetrabromobiphenyl ether; T4: thyroxine; T3: triiodothyronine. Dark yellow bars indicate 

significant exposure effect (LOAELs); pale yellow bars indicate no exposure effect 

(NOAELs); the width of the bars indicates the exposure period that the studies spanned 
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(i.e. squares filled in from GD7-18 indicate that animals in this study were exposed from 

GD7 through GD18).
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Figure 2. 
Windows of exposure for laboratory rat studies noting alterations in hormones 

produced by the anterior pituitary. Legend: FSH: follicle-stimulating hormone; GH: 

growth hormone; LH: luteinizing hormone; NS: Not specified; 2,3,7,8-TCDD: 2,3,7,8-

tetrachlorodibenzodioxin; TSH: thyroid-stimulating hormone. Dark yellow bars indicate 

significant exposure effect (LOAELs); pale yellow bars indicate no exposure effect 

(NOAELs); the width of the bars indicates the exposure period that the studies spanned 
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(i.e. squares filled in from GD7-18 indicate that animals in this study were exposed from 

GD7 through GD18).
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Figure 3. 
Windows of exposure for laboratory rat studies noting alterations in hormones produced 

by the adrenal medulla. Legend: HCH: Hexachlorocyclohexane; NS: Not specified. Dark 

yellow bars indicate significant exposure effect (LOAELs); pale yellow bars indicate no 

exposure effect (NOAELs); the width of the bars indicates the exposure period that the 

studies spanned (i.e. squares filled in from GD7-18 indicate that animals in this study were 

exposed from GD7 through GD18).
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Figure 4. 
Windows of exposure for laboratory rat studies noting alterations in hormones produced by 

the ovaries. Legend: NS: Not specified; OH-PCB: hydroxylated polychlorinated biphenyls; 

2,3,7,8-TCDD: 2,3,7,8-tetrachlorodibenzodioxin. Dark yellow bars indicate significant 

exposure effect (LOAELs); pale yellow bars indicate no exposure effect (NOAELs); the 

width of the bars indicates the exposure period that the studies spanned (i.e. squares filled in 

from GD7-18 indicate that animals in this study were exposed from GD7 through GD18).
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Figure 5. 
Windows of exposure for laboratory rat studies noting alterations in hormones produced 

by the testes. Legend: DEHP: Di(2-ethylhexyl)phthalate; NS: Not specified; 2,3,7,8-TCDD: 

2,3,7,8-tetrachlorodibenzodioxin; HCH: Hexachlorocyclohexane. Dark yellow bars indicate 

significant exposure effect (LOAELs); pale yellow bars indicate no exposure effect 

(NOAELs); the width of the bars indicates the exposure period that the studies spanned 

(i.e. squares filled in from GD7-18 indicate that animals in this study were exposed from 

GD7 through GD18).
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Table 1.

General overview of the results of the review.

Hormone Relevant chemicals (n) Relevant studies (n)

Anterior Pituitary

 GH   2   1

 TSH   3   8

 LH   7 10

 FSH   3   5

 Prolactin   1   1

Thyroid

 T3   9 13

 T4 11 37

 Adrenal Medulla

 Noradrenaline   2   2

 Norepinephrine   2   2

 Dopamine   6   6

Ovaries

 Estradiol   5   9

 Estrogen   3   3

 Progesterone   3   6

Testes

 Testosterone   8 12
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